
2.1. Autoregressions in economic forecasting 

Historically, the logic behind the formation of autoregressive models was as follows.  

     The researchers faced two different tasks of economic forecasting: 

     1) forecasting the indicator for the future as a continuation of some trend over time or as some 

factor dependence; 

     2) forecasting of an indicator that does not tend to grow, but fluctuates under the influence of 

random factors in a certain range. 

     These two tasks differed in different methods and different forecasting time periods. The first 

problem was solved with the help of regression-correlation analysis and made it possible to carry 

out medium and long-term economic forecasts. The second task was solved by calculating 

different variants of the average value indicator and made it possible to carry out short-term 

economic forecasts. And today these two tasks represent two independent directions in economic 

forecasting. 

     In fact, the task of medium- and long-term economic forecasting is to identify, describe and 

predict trends and relationships. The task of short-term forecasting is to predict deviations from 

this general trend or relationships. 

     The object of our scientific research is precisely the second direction – short-term forecasting. 

     Since the processes initially studied and predicted in this case had no tendencies to increase or 

decrease, they began to be called "stationary". 

The dominant point of view on how the "stationary process" is understood today is most clearly 

reflected by such a definition: "In practice, there are often random processes that occur 

approximately uniformly in time and have the form of continuous random fluctuations around a 

certain average value, and neither the average amplitude nor the nature of these fluctuations 

shows significant changes over time. Such random processes are called stationary" (Wentzel, 

2010, p. 479). Most often, such processes have a normal probability distribution. And since 

fluctuations in the stationary process occur relative to a "certain average value “, then the natural 

model of short-term forecasting is this very average value. 

     The simplest is the arithmetic mean of the last p observations: 
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     Here yt   are the values of a series varying in time t. These future values of the series are the 

object of forecasting. It is logical to assume that the next observed value of the considered series 

yt+1 will be close to this arithmetic mean, that is, the arithmetic mean acts as a forecast for the 

next step of observation: 
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     The main problem faced by forecasters when using the arithmetic mean as a forecasting 

model was the choice of the averaging period p. This turned out to be especially important for 

small samples. When choosing different averaging periods, different arithmetic means are 

obtained, which predicted the series in different ways. Therefore, for different series, the 

researchers experimentally selected different periods of averaging p. And after choosing this 

averaging period and obtaining new values, the average (2.1.1) was recalculated taking into 

account the new values, but keeping the averaging period p unchanged. Since such an average 

"moved" along the series, it became known as the "moving average". 

     The next stage in the development of short-term forecasting models was the understanding 

that the weighted average can be better than the arithmetic mean: 
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     Here, the bt weights reflect the different contribution of observations to the predicted value of 

the indicator. An important requirement is that the sum of these weights is equal to one. Only 

then can we talk about the average. If this rule is violated, the amount will not be the average. 

Since it is a weighted moving average, it is denoted by MA(p). 

     Weights bτ can be set in a variety of ways. Scientists used different procedures for this, 

including weighing forward, backward and in the middle of the averaging segment.  By changing 

these averaging centers, one can get different options for describing the series and change the 

accuracy of its prediction. To smooth the graph and eliminate the influence of strong random 

deviations on the overall view of the series, averaging over the sample center can be used. And 

for economic forecasting, the models whose weights decreased with decreasing indicators in the 

past turned out to be more accurate, that is, when, in addition to (2.1.3), the following condition 

was also fulfilled: 
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     In the economic short-term forecasting moving weighted average models began to be 

successfully used. But in this case, there was one problem that the forecaster faced every time he 

faced the need to predict a new series – how to choose weights in the moving average (2.1.3) so 

as to get the best forecast in terms of accuracy?  After all, one can set weights as he likes! It was 

important for scientists to set the weights in such a way that it would become universal.  This 

was the method for calculating the weights of observations as members of a series of an infinite 

geometric progression (Brown, 1956; Holt, 1957): 
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     There is no need to think about what values each weight takes – they are calculated using this 

formula. Therefore, it is enough just to set the value α and all the weights bτ   are easily 

calculated. 

     It is important to set the smoothing constant α, so that the sum of the terms of the series 

(2.1.4) calculated with the help of (2.1.5) is equal to one. 

For an infinite geometric progression, this means that the condition must be met: 
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     Hence, the boundaries in which the values of the smoothing constant should lie are clear 

(Svetunkov,1997): 

     0 2     (2.1.7)  

     If we substitute in (2.1.3) the weights of bt, which are calculated using rule (2.1.5) under 

condition (2.1.7), and assume that the series of observations is infinite, then the mean will take 

the following form: 
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     This forecasting model, called exponential smoothing, turned out to be convenient for 

calculations due to its simplicity and due to the fact, that by changing the values of the 

smoothing constant in the range (2.1.7), one can find such a value α, at which the model will 

give the smallest error in short-term economic forecasting. 

     Historically, forecasters began to use its truncated band instead of the band of values (2.1.7): 
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     It was not clear to them what meaning the model acquires beyond these limits. But if the 

model works within the limits (2.1.9), then its meaning is clear - the model is adaptive to the 

current information to varying degrees, and the smoothing constant α characterizes the degree of 

this adaptation - at α =0 the model is absolutely not adaptive to the current information, and at α 

=1 - it fully considers the current information, ignoring the past information. 

     Quite often, when finding the optimal value of the smoothing constant α, scientists and 

practicing economists were convinced that this optimal value is equal to one. This means that 
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     That is– the current value of the indicator turned out to be the best predictive value. 

Forecasters began to call this situation the NAÏVE model. 

In fact, there are almost no situations when the optimal value of the smoothing constant is equal 

to one (α=1). It is just that in such cases the smoothing constant goes beyond (2.1.9) and its 

optimal value lies in the range 

     1 2     (2.1.11)  

     In this range, the exponential smoothing model acquires special properties. In order to 

understand them, we will present under the conditions (2.1.9) the model (2.1.8) in this form: 
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     It can be seen from this form of the model representation that it works like this: the forecast 

value is calculated as the previous calculated value of the indicator, adjusted for the current error 

εt. The degree of this correction is determined by the value of the smoothing constant α. If it is 

equal to one, the NAÏVE model is obtained 

     In the infinite set of the smoothing constants (2.1.11), when the smoothing constant is greater 

than one, the model behaves differently: 
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     That is– not the calculated, but the actual value of the predicted indicator is adjusted for the 

current forecast error εt. The model acquires the property of self-learning. 

     The success of the exponential smoothing model in the short-term economic forecasting was 

somewhat obscured by the fact that the sum of the weights (2.1.5) will be equal to one only if the 

number of observations, and, therefore, the number of weighting coefficients is equal to infinity. 

That is, strictly speaking, the model (2.1.8) is not an average for small and medium samples. But 



with a large number of observations, the sum of the series (2.1.5) differs from one by such small 

values that this disadvantage can be neglected. 

     The fact that a stationary series can be successfully predicted using a model in which the sum 

of the weighting coefficients is not equal to one and this model is not some form of average has 

been known for quite a long time. As far back as 1907, A.A. Markov initiated the formation of 

an extensive class of stochastic processes with a discrete time component, which were named 

after him. Markov`s processes describe the following probabilistic state of the process depending 

on the current state. These were the first autoregressive models that have undergone significant 

development since then. In order to avoid difficulties with indices, the calculated and predicted 

value of the indicator is referred to the current time t and written as follows: 
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     This model is usually denoted as AR(p), where p is the autoregression order. 

     It is easy to notice that in the case when p→∞, and the coefficients aτ take the values of the 

terms of the geometric progression series (2.1.5), the AR(p) model turns into an exponential 

smoothing model. Consequently, the autoregressive model (2.1.14) is a general model of short-

term forecasting, the frequent cases of which are both the exponential smoothing model and the 

NAÏVE model. 

     The actual values of the predicted indicator differ from the calculated values by some error: 

ˆ
t t ty y − =    (2.1.15)  

     It follows from this that this error, in turn, can be considered as a certain time series that does 

not tend to increase or decrease its indicators, but is related to the predicted indicator. Therefore, 

a series of yt   values can be predicted, for example, using the moving average of this error: 
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     The order of averaging q of this moving average does not necessarily have to coincide with 

the order of autoregression p, since approximation errors behave differently than the simulated 

series. This model of the moving average approximation error became known as MA(q). If we 

remove the restrictions on the equality of the sum of coefficients in the MA(q) model to one, then 

the moving average will cease to be an average, but will become an autoregression. And 

autoregression is a more general and more accurate forecasting model than a moving average 



model. Today, a non-sliding weighted average (2.1.16) is used, namely, the autoregression of the 

error, when the sum of the coefficients bτ is not equal to one. But until now, autoregression, in 

which the errors εt, are the factors, continue to be called the MA(q) model. 

     The MA(q) model will give different predictive values of the yt, indicator than the model 

(2.1.14). In order to take advantage of each model –AR(p) and MA(q) - they were combined into 

one ARMA (p, q) model: 
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     A lot of educational and scientific literature is devoted to the study of the properties of these 

models. It is important for us that this literature shows the relationship between the coefficients 

aτ and bτ, as well as the interdependence of the order p from the order q. Using this property, a 

procedure for detecting lags and evaluating the coefficients of the model (2.1.17) was developed, 

which is called the "Box-Jenkins` methodology"  (Box-Jenkins). 

     The main difficulty in practical application of the ARMA(p,q) model is to determine the 

autoregression order p and the order q. In simple cases, studies of autocorrelation and partial 

autocorrelation functions can be useful. But in cases where the orders of p and q in the original 

series are greater than 3, such studies are ineffective. 

     Today there are several generally accepted methods of constructing models (2.1.17), which 

can be divided into two groups: 

     1) simultaneous evaluation of the coefficients aτ and bτ of the model (2.1.17), when, gradually 

increasing the orders of the model p and q and calculating one of the information criteria, the 

best model is selected according to this criterion; 

     2) the lag of the AR(p) model is estimated and the coefficients aτ are calculated, after which 

the errors εt are calculated and the MA(q) model is constructed on their basis. Then, based on the 

MA(q) model, the coefficients of the AR(p) model are adjusted. Since the AR(p) model obtained 

at the second step will not always correspond to the original model, a multi-iterative procedure 

for "debugging" the model is carried out – this is the practical implementation of the Box-

Jenkins methodology. 

     In practice, not every economic process can be classified as stationary. 

Therefore, the ARMA (p, q) model cannot always be used directly for economic forecasting. In 

such non-stationary cases, researchers transform the original series of values so that the resulting 



series does not increase or decrease. Most often, this is achieved by calculating the finite 

differences of the original series. The number of this finite difference is denoted as d and it is 

included in the name of the model, which, taking into account such transformations, is called 

ARIMA (p, d, q).  

     The basic ARIMA (p, d, q).  model today is the basis for the further development of short-term 

forecasting models that are used to solve various particular problems. Exogenous variables are 

added to this model and it is denoted as ARIMAX (p, d, q, b), autoregression is made nonlinear 

and denoted as NARMA (p, q), the seasonality factor is included in the model and this model is 

called SARMA (p, q) etc. 

 

2.2. Vector autoregressions 
    No economic indicator develops autonomously. Its dynamics is influenced by many different 

factors. There are also cases in economy when some indicators change, influencing each other. 

Such a joint interdependent dynamics was described for some time by a system of simultaneous 

equations, and later it began to be replaced by vector regressions. 

     In the case when the vector of indicators at time t is determined by the values of the same 

vector at previous points in time, it is appropriate to say that such processes are described by 

vector autoregressions. 

Vector autoregression of order p, denoted as VAR(p), can be presented in this form (Lütkepohl, 

2005, p.13):  
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     Here Yt is a k-dimensional vector of variables; 

      A0 - k-dimensional vector of coefficients;  

     Aτ – k х k - dimensional constant real matrices. 

     In the two-dimensional case, VAR (1) will take the form:  
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     VAR (1) in the three-dimensional case will look like this:        



        

1 1 111 12 13

2 21 22 23 2 1

31 32 333 3 1

ˆ

ˆ

ˆ

t t

t t

t t

y ya a a

y a a a y

a a ay y

−

−

−

    
    

=    
    
     .   (2.2.3) 

     VAR (1) for the four-dimensional case will be:  
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     It is easy to notice that the number of coefficients to be estimated for first-order vector 

autoregression is equal to k2, where k is the size of the vector used. And in general, the number 

of coefficients to be estimated for VAR(p) will be equal to (k2∙p). For example, for VAR (3) at 

k=5, it is necessary to estimate (52 3=75) unknown coefficients. That is, it is necessary to solve a 

system of 75 linear equations with 75 unknown quantities. It is obvious that the solution of such 

problems in economic practice is exotic today. 

     If we compare the one-dimensional autoregression model and the vector autoregression 

model with each other, we can see that the complexity of the autoregression models AR(p) is 

determined by the lag order p, and the complexity of the vector autoregression is determined 

primarily by the size of the vector k, and only then by its lag p. The theory of vector 

autoregressions has been developed in general, but these autoregressions have not found wide 

application in practice, since it is necessary to evaluate a large number of coefficients and in 

publications devoted to the construction of VAR(p) in practice, vectors with a dimension higher 

than four and a lag greater than two are rarely occurred. Therefore, the dimension of the vector is 

not indicated anywhere in the model notation, and it is the dimension of the vector, as can be 

seen from the previous arguments, that has a decisive influence on the model complexity. That is 

why, when using one or another model of vector autoregression, it is mandatory to indicate the 

dimension of its vector. Based on these considerations, hereinafter, referring to vector 

autoregressions, the dimension of the vector in the model designation will be indicated with the 

symbol k. Consequently, by the abbreviation VAR k(p) we will denote the autoregression of the 

order p of a k-dimensional vector, immediately imagining that when using this model in practice 

it will be necessary to estimate (k2∙p) coefficients. 

 



2.3. Complex-valued autoregression as a competitor to the VAR k (p) 

model 
         When modeling many economic processes, the use of models and methods of the theory of 

functions of a complex variable turns out to be no worse, and in some cases better, than models 

of real variables. For example, when modeling production processes, the production functions of 

complex variables describe these processes in more detail, and in some cases demonstrate greater 

accuracy in forecasting than the production functions of real variables (Svetunkov, 2012). 

     This gave rise to a desire to test the possibility of using complex-valued economics with 

regard to the economic forecasting problems, in particular, in relation to the tasks of short-term 

economic forecasting using autoregression models 

     In general, the complex autoregression model can be written as follows: 
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     Here y1t and y2t are real variables predicted at point of time t;  

     i is an imaginary unit, 1i = − ;  

      F is some complex-valued function;  

      τ is the autoregression lag; 

     p is the autoregression order;  

       ɛ1t and ɛ2t are approximation errors of the first and second variables at point of time t. 

     Depending on the type of complex-valued function F, complex autoregressions (2.3.1) can be 

either linear or nonlinear. Nonlinear autoregressive models of real variables are not often found 

both in practical application and in theoretical research. Therefore, in our study, we will focus 

our attention on linear autoregressions, and from now on we will understand complex 

autoregressions to be linear forms of the model (2.3.1), and will denote these models as CAR(p).   

     Thus, the complex-valued CAR(p) autoregressive models under consideration will be 

generally represented in this form: 
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 where b0 and b1 are coefficients (free terms) reflecting the initial value of the complex series;   



      a0τ and a0τ are coefficients of proportionality 

     Usually, when presenting autoregression models, free terms are omitted, since they can be 

eliminated by centering the original variables with respect to their arithmetic means. Therefore, 

we will further assume that the coefficients b0 and b1 of the CAR(p) model are equal to zero. 

     Then the complex autoregression of the first order CAR (1) can be represented either like this: 
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or in a vector form: 
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     While comparing (2.3.3) with (2.3.2), we can make sure that we are dealing with a special 

case of 2-dimensional vector autoregression  

VAR 2(1). At the same time, for the practical application of the VAR2(1) model, it is necessary to 

estimate four unknown coefficients, and for the practical application of the CAR (1) model, only 

two coefficients are needed. This means that the VAR2(1) model, with the help of two additional 

coefficients, will take into account some nuances, and therefore it will describe the initial process 

more accurately than complex autoregression. 

Perhaps this will result in a greater prognostic accuracy of this model compared to the CAR (1) 

model. But the undeniable advantage of the CAR (1) model is that in order to apply it in practice, 

it is necessary to estimate only two coefficients, not four. 

     Can CAR(p) be applied in case when k-dimensional vectors of order greater than three are 

used?  There is such a possibility. For example, for k=3 and p=1, the following CAR3(1) model 

should be used: 
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     Or in a vector form: 
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     In this case, it is necessary to estimate seven unknown coefficients, and in the 3-dimensional 

model VAR3(1) (2.3.3) it is necessary to estimate nine unknown coefficients. The efforts saving 

in estimating the coefficients is obvious. 

     This saving is even more obvious if we compare the 4-dimensional vector VAR4(1) (2.3.4) 

and the CAR4(1) model. In the classical vector autoregression VAR4(1) it is necessary to estimate 

16 unknown coefficients. And the CAR4(1) model will be written like this: 
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     Whence it can be seen that in order to use this model in practice, it is necessary to estimate 8 

coefficients, and not 16 coefficients. This is two times less than that of the model VAR4(1). 

     If we reduce the СARk(p) model to a vector form and compare it with the vector 

autoregression model, then we can determine the number of coefficients of the VARk(1) and 

СARk(1)  models of different dimensions k and understand their difference.  This has been done 

in Table 2.1. 

                                                                                                    Table 2.1. 

      Coefficients of VARk(1) and CARk(1)  models for different dimensions of  vector k  

 

k 

VARk(p) СARk(p) 

Number of 

coefficients 

 

 

VARk(

p) 

 

СARk(

p) 

2 
11 12

21 22

a a

a a
 

11 12

12 11

a a

a a

−

 

4 2 

3 
11 12 13

21 22 23

31 32 33

a a a

a a a

a a a
 

11 12 13

12 11 22

31 32 33

a a a

a a a

a a a

−

 

9 7 



4 
11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

a a a a

a a a a

a a a a

a a a a
 

11 12 13 14

12 11 14 13

31 32 33 34

32 31 34 33

a a a a

a a a a

a a a a

a a a a

− −

− −

 

16 8 

5 
11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

a a a a a

a a a a a

a a a a a

a a a a a

a a a a a
 

11 12 13 14 15

12 11 14 13 25

31 32 33 34 35

32 31 34 33 45

51 52 53 54 55

a a a a a

a a a a a

a a a a a

a a a a a

a a a a a

− −

− −

 

25 17 

6 
11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 53 54 55 56

61 62 63 64 65 66

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a
 

11 12 13 14 15 16

12 11 14 13 16 15

31 32 33 34 35 36

32 31 34 33 36 35

51 52 53 54 55 56

52 51 54 53 56 55

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

a a a a a a

− − −

− − −

− − −

 

36 18 

7 
11 12 13 14 15 16 17

21 22 23 24 25 26 27

31 32 33 34 35 36 37

41 42 43 44 45 46 47

51 52 53 54 55 56 57

61 62 63 64 65 66 67

71 72 73 74 75 76 77

a a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a
 

11 12 13 14 15 16 17

12 11 14 13 16 15 27

31 32 33 34 35 36 37

32 31 34 33 36 35 47

51 52 53 54 55 56 57

52 51 54 53 56 55 67

71 72 73 74 75 76 77

a a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

a a a a a a a

− − −

− − −

− − −

 

49 31 

 

     The table shows the coefficients of the two models for vectors with dimension up to k=7. It 

makes no sense to continue this table, since the pattern is already obvious – to build a model of 

complex vector autoregression, it is always necessary to estimate fewer coefficients than for the 

classical model of vector autoregression. And it is already clear that, for example, to use the 

VAR8(1) model, at k=8, it will be necessary to estimate 64 unknown coefficients, while for the 

CAR8(1) model, only 32 unknown coefficients. For the vector autoregressions with an even 

vector dimension, to construct a complex autoregression, it is necessary to estimate two times 

less coefficients than for classical vector autoregression. As far as information criteria are used to 

select complex models, this circumstance can be decisive when choosing a model, since in these 

criteria the number of model coefficients   significantly affects the value of the criterion. 

Therefore, it can be concluded from Table 2.1 that the two models under consideration - VARk(p) 

and CARk(p)- can really compete with each other only if two- or three-dimensional vector 



autoregressions are used. In these cases, an increase in the number of coefficients of the VARk(p) 

model will be compensated by a decrease in the variance of the approximation error or 

forecasting error, and the information criterion can make a choice in favor of the VARk(p) model. 

But in all other cases, one should expect that the choice will fall on the CARk (p) model. 

     Let us demonstrate this statement with a concrete example. 

     We have at our disposal 118 data on exchange rates on the Moscow Interbank Currency 

Exchange from 20.09.2018 to 16.03.2019. This period of time has been chosen deliberately, 

because during this period the behavior of currencies can well be attributed to a stationary 

process. We will use the following exchange rates in Russian rubles: 

 1) US dollar, y1t;  

  2) euro, y2t; 

  3) pound sterling, y3t; 

  4) Swiss franc, y4t. 

     We will sequentially build models VAR2(1) and CAR (1) for the first two variables (y1t, y2t), 

VAR3(1) and CAR3(1) for the first three variables  

(y1t, y2t, y3t) and VAR4(1) and CAR4(1) for the four-dimensional vector (y1t, y2t, y3t, y4t). 

     Let us start with a simple two-dimensional case. By estimating the coefficients of the VAR2(1) 

and CAR2(1) models on these data using the least squares method, it is possible to obtain the 

models that, as expected, describe the original data differently. The results of the available data 

approximation by these models are summarized in Table 2.2. 

     In this table and in all subsequent tables of this paragraph, the indices i and j indicate the 

currency numbers in this order: 1 - US dollar, 2 - euro, 3 - pound sterling, 4 - Swiss franc. 

Therefore, for example, at the intersection of the line denoted by the number 1 and the column 

denoted by the number 2, the value of the coefficient a12 = 0.026 of two-dimensional vector 

autoregression is given. This coefficient shows the influence of the euro exchange rate at the 

preceding moment on the dollar exchange rate at the present moment. 

     The last column of the table shows the variances of approximation error for each model as a 

whole and for each currency type individually. So, the approximation error of the VAR2(1) model 

was 0.3695 - this is shown in the first line of the table, and the approximation error of the dollar 

rate by this model turned out to be 0.1661. 



The first part of the table shows data on the VAR2(1) model, and the second part shows data on 

the CAR (1) model. 

                                                                                                   Table 2.2.  

Comparative results of currency exchange rate modeling by VAR2(1) and CAR (1) models  

       i 

j 

Coefficients 

σ2 

1 2 

Model VAR2(1) 0,3695 

1 0,9968 0,0026 0,1661 

2 0,1409 0,8761 0,2034 

                Model СAR(1) 0,3774 

1 0,9996 -0,0001 0,1660 

2 0,0001 0,9996 0,2114 

 

     A simple comparison of the results shows that, as expected, the VAR2(1) model turned out to 

be generally more accurate than the CAR (1) model, but insignificantly: the total variance of 

vector autoregression was 0.3695, while the total variance of complex autoregression turned out 

to be higher - 0.3774, which is only 2.15% worse. 

     The variance of approximation error of the dollar rate using the VAR2(1) model is almost 

equal to the variance of approximation error of the dollar rate when using CAR (1). The 

difference between them was only one ten thousandth: 0.1661-0.1660. And the complex 

autoregression model turned out to be more accurate. 

     The euro exchange rate model VAR2(1) described more accurately: the variance of the 

approximation error is 0.2034, while for the CAR (1) model, the variance of approximation error 

of euro rate turned out to be 0.2114, which is 5% more. 

     Since information criteria are used to select the best model as a compromise between the 

desire to choose the most accurate model in the approximation and, at the same time, to choose a 

simpler model, Bayesian information criteria were calculated:  

     

2ln ln( )
k

BIC N
N

= +
   (2.3.7) 



     Here   N is the number of observations. 

     The calculated values of the criteria differ from each other 

- BICVAR
2

(1) =-0,834; 

- BICCAR (1) =-0,894. 

     The information criteria turned out to be negative, since the variances of approximation errors 

are less than one and the logarithms of these variances become negative: for the first model, this 

logarithm is equal to  

(-0.9957), and for the second model - (-0.9744).   Since four coefficients are used in the VAR2(1) 

model, and two coefficients are used in the CAR (1) model, the information criterion for complex 

autoregression turned out to be less and the preference should be given to it, since the increase in 

the accuracy of the model with its simultaneous complication turned out to be not so significant 

as to sacrifice the simplicity of the model. 

     The results for a three-dimensional vector, k=3., turned out to be even more significant for the 

complex autoregression. They are presented in table 2.3.                                                                          

                                                                                            Table 2.3.  

Comparative results of currency exchange rate modeling by VAR3(1) and CAR3(1) models 

                        

i 

j 

Coefficients  

σ2 

1 2 3 

Model VAR3(1) 0,7456 

1 1,0331 -0,0091 -0,0177 0,1654 

2 0,1521 0,8968 -0,0269 0,2023 

3 0,2111 -0,1065 0,9307 0,3779 

Model СAR3(1) 0,7545 

1 1,0149 0,0083 -0,0044 0,1657 

2 -0,0083 1,0149 -0,0199 0,2110 

3 0,2098 -0,1020 0,9277 0,3779 



 

     For the three-dimensional case, the first two variables y1t and y2t are better described by the 

VAR3(1) model, and the third variable is described equally well by both the VAR3(1) model and 

the СAR3(1) model. And in general, the variance of vector autoregression 0.7456 is less than the 

variances of complex-valued autoregression 0.7545. This difference in approximation accuracy 

is 1.2%. 

     But for VAR3(1), the information criterion turned out to be equal to BIC=0,0703, and for 

CAR3(1) it was significantly less, namely, BIC=0,0014 

That is, according to the information criterion, the model CAR3(1) is more preferable than the 

VAR3(1) model and it is the model of complex vector autoregression that the researcher will 

choose the without hesitation. 

     In the four-dimensional vector autoregression VAR4(1), the estimates require 16 unknown 

coefficients, and in the complex–valued autoregression СAR4(1) - only 8 unknown coefficients. 

All necessary calculations were performed and the coefficients of these two models were found. 

The values of these coefficients and the variances of approximation errors by these two models 

of the initial series are given in Table. 2.4. 

                                                                                                     Table 2.4. 

 Comparative results of currency exchange rate modeling by VAR4(1) and CAR4(1) models 

          i 

j 

Coefficients 

σ2 

1 2 3 4 

Model VAR4(1) 0,9023 

1 1,0717 0,2750 -0,0627 -0,3030 0,1574 

2 0,1701 0,9501 -0,0365 -0,0660 0,2010 

3 0,2531 0,1768 0,8820 -0,3007 0,3713 

4 0,1990 0,2474 -0,0842 0,6291 0,1727 

Model СAR4(1) 0,9497 

1 1,0114 0,0254 -0,0063 -0,0253 0,1669 

2 -0,0254 1,0114 0,0253 -0,0063 0,2092 



3 0,1009 0,0302 0,9132 -0,0453 0,3869 

4 -0,0302 0,1009 0,0453 0,9132 0,1866 

 

     And again, we can make sure that if we use the criterion of the minimum variance of 

approximation error for to selecting the best forecasting model, then the model VAR4(1) is 

slightly more accurate over all positions than the СAR4(1) model. And, in general, the variance 

of approximation error of the VAR4(1) model is less than the approximation error of the СAR4(1) 

model by 5.3%, which seems to be significant.  But the information criterion for vector 

autoregression is BIC=0,5440, and for the complex-valued autoregression it is two times less - 

BIC=0,2718. So, if we use the information criterion to choose the best model, then it will 

unambiguously indicate that the complication of the model with a simultaneous increase in the 

number of estimated coefficients does not make sense. Complex-valued autoregression should be 

used, which describes the vector of changing variables maybe a little worse, but it is much 

simpler and therefore it   should be expected to be more stable in the results of short-term 

forecasting and more accurate. 

     Interesting results were obtained by Yevgeny Goltsev, who, at my request, built two first-

order vector autoregressions with a dimension k=8, namely, VAR8(1) and CAR8(1) using the 

example of the Moscow Exchange economic conditions indices. 8 industry indices are 

distinguished on it1: 

     1) consumer sector y1t;  

      2) chemistry and petrochemistry y2t; 

      3) finance y3t; 

      4) power industry y4t; 

       5) metals and mining y5t; 

       6) oil and gas y6t; 

       7) telecommunications y7t; 

       8) transport y8t. 

 
1 https://www.moex.com/ 



     According to the series of changes in these indices from 01.05.2016 to 20.09.2020, the 

coefficients of these two models were evaluated - VAR8(1) (64 unknown coefficients) and 

CAR8(1) (32 unknown coefficients)  

      The model VAR8(1) looks like this: 
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It describes the basic data with a standard error σ=430, 27. The information criterion for it is 

BIC=13,65. 

     The model of complex vector autoregression CAR8(1) has other coefficients: 
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And it describes the basic data somewhat worse. It has a standard error equal to σ=441,94. But 

due to the fact that the latter model estimates twice as few coefficients, its information criterion 

is less than that of the VAR8(1) model, and is BIC=12,94. 

     Therefore, for short-term forecasting purposes, a preference should be given to the complex 

autoregression model CAR8(1). 

     Based on the data from 09/27/2020 to 04/25/2021, Yevgeny Goltsev with the help of these 

models made retro forecasts for one-step of observations and compared the prognostic values 

with the actual ones. The results of this comparison are shown in Table 2.5.                                                                       

                                                                                                      Table 2.5. 

Results of the retro forecast of the economic conditions indices of the models (2.3.8) and (2.3.9) 



№  Industry Index Standard error of retro forecast, σ Improved accuracy %  

VAR8(1) (2.3.8) СAR8(1) (2.3.9) 

1.  Oil and gas 331,26 267,52 21,29 

2.  Finance 344,25 307,14 11,39 

3.   Metal and mining 321,45 295,21 8,51 

4.  Power industry 89,63 54,09 49,46 

5.  Consumer 177,91 164,85 7,62 

6.  Chemistry and petrochemistry 331,38 372,46 -11,67 

7.   Transport 45,16 36,96 19,98 

8.  Telecom  64,20 36,42 55,23 

 

     Only for one index, namely, the Chemistry and Petrochemistry index of Russia, the retro 

forecast, with the help of complex autoregression, turned out to be worse than the forecast 

performed by using vector autoregression. All other indices of the Moscow Exchange are 

predicted better using the СAR8(1) (2.3.9) model, and in the case of Power Industry and Telecom 

indices, the forecasting accuracy is even twice as high. 

     We took the simplest and most accessible data as an example. And we found that to predict 

this series of values, BIC always recommends to use complex-valued autoregression, rather than 

vector autoregression. This means that in most practical cases complex-valued autoregression 

will be preferable to vector autoregression. And the greater the dimension of the vectors and the 

higher the order of autoregression, the lower the value will be taken by the BIC criterion for this 

model in comparison with vector autoregression. 

     This means that the complex-valued autoregression model is a competing vector 

autoregression model, and a significant reduction in the complexity of new models compared to 

vector autoregression models allows them to be widely used in economic practice. 

 

2.4. CARMAk(p,q) in economic forecasting 
     We have seen that the CARk(p) model is a good alternative to the vector autoregression 

models – they are simpler, contain fewer coefficients that need to be estimated, and they do not 



significantly lose in approximation accuracy to the VARk(p) models. That is why the information 

criterion for the models considered in the previous paragraph recommends using a complex 

autoregression model, rather than a vector one. 

     Earlier it was shown how the AR(p) autoregression model was transformed into the ARMA 

(p, q) model. The same logic was used by scientists to form a more complex VARMAk (p,q) 

model based on the vector autoregression model: 

0 1 1 1 1
ˆ ... ...t t p t p t q t qY A AY A Y M U M U− − − −= + + + + + +

.   (2.4.1) 

Here U is the vector of approximation errors which has the same dimension k as the vector of 

indicators Y. In the general case, the number q of preceding vectors of approximation error U is 

not equal to the number p of preceding vectors of predicted indicators Y. 

At the same time, as in the case of ARMA(p,q), a relationship is assumed between VARk(p) and 

MAk(q) (Lütkepohl, 2005, p. 436). 

     In the two-dimensional case, the model VARMA2(1,1), taking into account the notations we 

have adopted, will be written as follows (Lütkepohl, 2005, p. 443): 
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     Concerning the errors of the εtt vector U, they are considered to be "white noise" with zero 

mathematical expectation. In order to use this model in practice, it is necessary to estimate its 

eight coefficients: 4 coefficients of the component VAR2(1) and 4 coefficients of the second 

component MA2(1).   

         Considering   the vector complex autoregression model as a special case of vector 

autoregression, one can obtain a similar (2.4.1) CARMA(p,q) model. We will not consider the 

option when the component MA(q) is represented as a simple k-dimensional vector. We will also 

consider this component in a complex form. Then, for the two-dimensional case, CARMA(1,1) 

will be written as: 
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Or, in a complex form: 
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     Here, as can be seen, it is necessary to estimate the values of only 4 unknown coefficients, 

and not 8 coefficients, as is required for the practical application of the vector autoregression 

model (2.4.2). 

     In order to estimate the practical acceptability of the CARMA(p,q) model, let us consider a 

simple case of constructing the VARMA4(2,1), model, which will be written as follows: 
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     It is easy to see that for the practical use of this model, it is necessary to estimate 48 unknown 

coefficients from statistical data. This is not an easy task for practicing economists, although the 

four-dimensional case of the economic vector seems to be a fairly simple reflection of real 

economic situations. Therefore, despite the simplicity of the model, few practicing forecasters 

will dare to build such a model and use it in practice. 

     But a similar to it model СARMA4(2,1), in which not only the variables are presented in a 

complex form, but the error vector is also presented in a complex form, will be written as 

follows: 
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     In order to use this model in the practice of short-term economic forecasting, it is necessary to 

estimate only 24 coefficients - two times less. 

And this task can be solved by almost any economic forecaster. 

     The number of coefficients of the VARMAk(p,q) model, which should be estimated on the 

available set of values, depends both on the orders p and q  of the model (2.4.1) and on the 

dimension  k of the vector of variables, and it is the dimension of the vector k  that plays a 

decisive role in increasing the complexity of the model. The total number of coefficients of such 

a model can be described by the formula: k2∙(p+q).. The number of coefficients of the 

СARMAk(p,q) model will always be less than that of the VARMAk(p,q) model. And for an even 

number of vector dimension k, the number of these coefficients will always be two times less and 

equal to k2∙(p+q)/2. For example, 192 unknown coefficients should be estimated for the 

VARMA4(3,4) model, and 86 coefficients for the CARMA4(3,4 model. 



     This means that the higher the dimension of the vector in a vector autoregression, the less 

chance the vector autoregression has of being better compared to a complex autoregression of 

the same order, since the information criteria will always recommend models with fewer 

coefficients number. 

      Let us define, for example, the condition under which the forecaster is hesitant about which 

model to prefer - VARMA4(2,1) or CARMA4(2,1)?   

These models have been given above in full form. The situation of choice is possible only if the 

information criteria calculated for each model turn out to be equal to each other, that is, it is 

fulfilled: 

2 248 24
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N N
 + = +

   (2.4.5) 

Hence, we have for the variances: 
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   (2.4.6) 

     In the previous paragraph, 118 observations were used for calculations. Let us substitute this 

number N=118 в (2.4.6).  Then we get that the variance of CARMA4(2,1) should be 2.64 times 

greater than the variance of VARMA4(2,1), that is, the variance of the approximation error of the 

complex autoregression CARMA4(2,1) should exceed the variance of the approximation error of 

the VARMA4(2,1) model by 264%!  Obviously, such a situation is unlikely to be encountered in 

practice. 

    We draw an unambiguous conclusion from this: CARMAk(p,q) models will almost always be 

preferable to VARMAk(p,q)  models at k>3.  But even in the case when k=2, the complex 

autoregression has a good chance of becoming a better model than the vector autoregression 

model, which is demonstrated by the example in Table 2.2, when simple VAR2(1)  and CAR(1) 

models were considered without the MA(q). component. 
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